
Adding the three pillars
of Observability to your
Python app

Eoin Brazil, PhD, MSc, Team Lead, MongoDB

Tracing,
Fast and
Slow by
Lynn
Root

Over-simplified Distributed System Example, Lynn Root, CC BY 4.0

https://www.roguelynn.com/words/tracing-fast-and-slow/
https://www.roguelynn.com/words/tracing-fast-and-slow/
https://www.roguelynn.com/words/tracing-fast-and-slow/
https://www.roguelynn.com/words/tracing-fast-and-slow/
https://www.roguelynn.com/words/tracing-fast-and-slow/
https://creativecommons.org/licenses/by/4.0/

Distributed Systems or Your Standard
Web Stack ?

X 4 ? X 3 ? X 3 ?X 2 ?

X 4 ? X 2 ?

What happens when it all
runs but still something isn’t
working right, particularly
some of the time?

Observability

Make complex systems transparent to
enable understanding of the systems
state.

Pillars - Logs & Metrics & Events

Monitoring

Aims to report the overall health of
systems.

Strong overlap with aspects of Metrics
but focus for Application side for this
talk.

Observability vs Monitoring

Monitoring - Patterns

● Utilisation, Saturation, Errors (USE)
● For each resource, Rate (RPS), Errors,

Duration (RED method)
● Golden Signals (Latency, Errors, Traffic,

Saturation)

Observability vs Monitoring

Enable understanding with context, ideal
for debugging. Unknown failure modes.

Snapshot of overall health of systems.
Known failure modes.

Logs

● Typically, loosely structured requests,
errors, or other messages in a
sequence of rotating text files.

● Can be structured and should be.
● Specialised additions - exception

trackers (Sentry, Rollbar, etc.)

Logs

[2018-10-17 20:00:17 +0100] [33353] [INFO] Goin' Fast @ http://0.0.0.0:8006
[2018-10-17 20:00:17 +0100] [33353] [INFO] Starting worker [33353]
[2018-10-17 20:18:20 +0100] - (sanic.access)[INFO][127.0.0.1:59076]: GET
http://127.0.0.1:8006/ 200 829

Logs - Semi Structured

TIMESTAMP PID LOG
LEVEL MESSAGE

My own software problems/learnings

Logs - 3 Steps to add structure

● Add UUIDs to requests (spans)
● Use key-value pairs instead of text
● Use JSON instead of plain text

Structlog & UUID

Jaegar
Tracing
Architecture

https://www.jaegertracing.io/docs/1.7/architecture/
https://www.jaegertracing.io/docs/1.7/architecture/
https://www.jaegertracing.io/docs/1.7/architecture/

2018-10-24 14:01:47,331 - 89195 - INFO - main - {
 "endpoint": "/",
 "level": "info",
 "logger": "__main__",
 "request_id": "UUID('6fafaa91-eca0-4d4a-a9f8-0c441a01790b')",
 "timestamp": "2018-10-24T13:01:47.330811Z"
}

Logs - UUID

TIMESTAMP LOGGER LOG
LEVEL ENDPOINT REQUEST

ID

Logs - 3 Steps to add structure

● Add UUIDs to requests (spans)
● Use key-value pairs instead of text
● Use JSON instead of plain text

Structlog & UUID

Metrics

Application metrics, statsd was the
forerunner of many of this category.

● How many requests made ? How many
failures ? What types of failures ? Service
checks ?

Metrics

Metrics - statsd

>>> import statsd

>>> c = statsd.StatsClient('localhost', 8125)

>>> c.incr('auth.success')

>>> c.timing('login.timer', 320)

>>> from datadog import statsd

>>> from datadog.api.constants import CheckStatus

>>> statsd.increment('index.response.total',

tags=[’code=200’])

>>> statsd.event('deploy','app: pycon.ie\n' +

'version: ' + githash + 'env: live')

>>> statsd.service_check(check_name='pycon',

status='Checkstatus.OK', message='Response: 200 OK')

Metrics - DogStatsD

Metrics - Prometheus

Time series metric name with KV pairs
(labels)

● UDP packet every time a metric is recorded
(statsd) vs aggregate in-process and submit
them every few seconds (Prometheus)

Metrics are a snapshot with counters
and gauges (short period).

Log derived metrics, granular info,
holistic view more easily aggregated.

Logs and Metrics overlap

Events

2018-10-24 13:51:02,136 - 89028 - INFO - main - {
 "event": "Start running API",
 "level": "info",
 "logger": "__main__",
 "timestamp": "2018-10-24T12:51:02.136399Z"
}

Logs - Structured (structlog)

TIMESTAMP LOGGER LOG
LEVEL MESSAGE (EVENT)

Remains human readable

Makes it easier to specific event via
associated data

JSON simplifies log aggregator’s job

Why Structured Logs & JSON ?

Graylog, ELK, Splunk, FluentD, etc ….

A key is a group-by target allows for new
types of questions to be asked easily.

Issue/Incident remediation & historic
trends (business intelligence)

Log Aggregators

My own software problems/learnings

1) Aggregates and extracts important
data from server logs, which are often
sent using the Syslog protocol.

2) It also allows you to search and
visualize the logs in a web interface.

Graylog

Graylog - Query bytes exist

Source: https://www.graylog.org/post/trend-analysis-with-graylog

Show the number of calls for all API
methods by name?

Log your API methods by name
Tags allow you to use group-by

Beyond a Browser UI to Logs ?

Graylog - Alerting

Source: http://docs.graylog.org/en/2.4/pages/streams/alerts.html

● “Structured logging in Python” and “Logging
as a First Class Citizen” by Steve Tarver

● http://www.structlog.org/en/stable/
● “I Heart Logs: Event Data, Stream

Processing, and Data Integration” by Jay
Kreps

Find more on logs

http://stevetarver.github.io/2017/05/10/python-falcon-logging.html
http://stevetarver.github.io/2016/01/09/logging-best-practices.html
http://stevetarver.github.io/2016/01/09/logging-best-practices.html
http://www.structlog.org/en/stable/
http://shop.oreilly.com/product/0636920034339.do
http://shop.oreilly.com/product/0636920034339.do

● Measure Anything, Measure Everything (Etsy)
● Collecting Metrics Using StatsD, a Standard

for Real-Time Monitoring
● Monitoring Applications with StatsD
● Logs and Metrics by Cindy Sridharan

○ https://github.com/google/mtail

Find more on metrics

https://codeascraft.com/2011/02/15/measure-anything-measure-everything/
https://thenewstack.io/collecting-metrics-using-statsd-a-standard-for-real-time-monitoring/
https://thenewstack.io/collecting-metrics-using-statsd-a-standard-for-real-time-monitoring/
https://blog.goguardian.com/nerds/monitoring-applications-with-statsd
https://medium.com/@copyconstruct/logs-and-metrics-6d34d3026e38
https://github.com/google/mtail

● Tracing, Fast and Slow by Lynn Root
● Monitoring and Observability by Cindy

Sridharan

Find more on events

https://www.roguelynn.com/words/tracing-fast-and-slow/
https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c
https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c

Observability

Logs - UUIDs, KV pairs, Structlog, JSON,
mtail
Metrics - statsd, dogstatsd
Events - Graylog, Splunk, ELK

Only the tip of the iceberg… and you still
need to monitor!

What happens when it all
runs but still something isn’t
working right, particularly
some of the time?

Questions ?

