Adding the three pillars
of Observability to your
Python app

Foin Brazil, PhD, MSc, Team Lead, MongoDB

3rd Party

Backend | |
acken - API Service

Frontend

__ lracing,
! Fast and
e::::::::::::a Backend DB S|OVV by

- |\ =
S Root

Frontend

Backend

: Over-simplified Distributed System Example, Lynn Root, CC BY 4.0

https://www.roguelynn.com/words/tracing-fast-and-slow/
https://www.roguelynn.com/words/tracing-fast-and-slow/
https://www.roguelynn.com/words/tracing-fast-and-slow/
https://www.roguelynn.com/words/tracing-fast-and-slow/
https://www.roguelynn.com/words/tracing-fast-and-slow/
https://creativecommons.org/licenses/by/4.0/

Distributed Systems or Your Standard
Web Stack ?

X472 X27

What happens when it all
runs but still something isn’t
working right, particularly
some of the time?

Observability

Make complex systems transparent to
enable understanding of the systems

state.

Pillars - Logs & Metrics & Events

Monitoring

Aims to report the overall health of
systems.

Strong overlap with aspects of Metrics

but focus for Application side for this
talk.

Observability vs Monitoring

Whitebox Blackbox

Metrics R LI Td]T-
Logs Polling
Traces Uptime

Monitoring - Patterns

e Ultilisation, Saturation, Errors (USE)

e [or each resource, Rate (RPS), Errors,
Duration (RED method)

e Golden Signals (Latency, Errors, Traffic,
Saturation)

Observability vs Monitoring

Enable understanding with context, ideal
for debugging. Unknown failure modes.

Snapshot of overall health of systems.
Known failure modes.

e [ypically, loosely structured requests,
errors, or other messages in a

sequence of rotating text files.
e (Can be structured and should be.
e Specialised additions - exception
trackers (Sentry, Rollbar, etc.)

Logs - Semi Structured

[2018-10-17 20:00:17 +0100] [33353] [INFO] Goin' Fast @ http://0.0.0.0:8006
[2018-10-17 20:00:17 +0100] [33353] [INFO] Starting worker [33353]
[2018-10-17 20:18:20 +0100] - (sanic.access)[INFO][127.0.0.1:59076]: GET
http://127.0.0.1:8006/ 200 829

) a I
PID MESSAGE
____ N J

My own software problems/learnings

Logs - 3 Steps to add structure

e Add UUIDs to requests (spans)

e Use
e Use

Key-value pairs instead of text

JSON instead of plain text

Structlog & UUID

[Y

[

B | laegar
Trace | - Tracing

Architecture

https://www.jaegertracing.io/docs/1.7/architecture/
https://www.jaegertracing.io/docs/1.7/architecture/
https://www.jaegertracing.io/docs/1.7/architecture/

Logs - UUID

2018-10-24 14:01:47,331 - 89195 - INFO - main - {
'endp01nt A
"level” 1nfo”
”logger”: maln__ ,

”request_ld . "UUID('6fafaa91-ecaB-4d4a-a9f8-0c441a01796b ')",
"timestamp’: "20718-10-24T13:01:47.3308117"

REQUEST
ID

]

Logs - 3 Steps to add structure

e Add UUIDs to requests (spans)

e Use
e Use

Key-value pairs instead of text

JSON instead of plain text

Structlog & UUID

Metrics

Application metrics, statsd was the
forerunner of many of this category.

e How many requests made ? How many
failures ? What types of failures ? Service
checks ?

Metrics - statsd

>>> import statsd
>>> ¢ = statsd.StatsClient('localhost', 8125)
>>> c.incr('auth.success')

>>> c.timing('login.timer', 320)

Metrics - DogStatsD

>>> from datadog import statsd

>>> from datadog.api.constants import CheckStatus
>>> statsd.increment ('index.response.total',
tags=['code=200"1)

>>> statsd.event ('deploy', "app: pycon.ie\n' +
'version: ' + githash + 'env: live')

>>> statsd.service check (check name='pycon',

status='Checkstatus.0OK', message='Response: 200 OK")

Metrics - Prometheus

Time series metric name with KV pairs
(labels)

e UDP packet every time a metric is recorded
(statsd) vs aggregate in-process and submit
them every few seconds (Prometheus)

Logs and Metrics overlap

Metrics are a snapshot with counters
and gauges (short period).

Log derived metrics, granular info,
holistic view more easily aggregated.

Logs - Structured (structlog)

2018-10-24 13:51:02,136 - 89028 - INFO - main - {

‘event"': "Start running API",

"level": "info",

"logger": "__main__",

"timestamp': "20718-10-24T12:51:02.1363997"
}

MESSAGE (EVENT)

Why Structured Logs & JSON ?

Remains human readable

Makes it easier to specific event via
associated data

JSON simplifies log aggregator’s job

Log Aggregators
Graylog, ELK, Splunk, FluentD, etc

A key is a group-by target allows tfor new
types of guestions to be asked easily.

Issue/Incident remediation & historic
trends (business intelligence)

My own software problems/learnings

1) Aggregates and extracts important
data from server logs, which are often
sent using the Syslog protocol.

2) It also allows you to search and
visualize the logs in a web interface.

Graylog - Query bytes exist

Search

no/Outom

E Search in the last 30 minutes v » Notupdating v € v

n _exists_:bytes %

Search result

Found 703,018 messages in 56 ms, searched in 7
Results retrieved at 2018-06-14 15:02:15

Add to dashboard v

Hour, Minute

Add count to dashboard v Save search criteri

More actions v 20K
Fields Decorators l.......

Default All None Filt

account_id

» O action Messages - 2(3|4a|s5|6|7| 8|91 | Next e B

aws_log_group

aws._log_stream Timestamp source packets src_addr
¥ © aws_source 2018-06-14 15:01:14.000 aws-flowlogs 2820 6 199.71.046
¥ @ bytes i-68b7: PT TCP 109.71.8.46:43 -> 172.30.0.55:3964
— 2018-06-14 15:01:14.000 aws-flowlogs 82 2 54.245.197.138 2018
68674954 ACCEPT TCP 54.2
2018-06-14 15:01:14.000 6 172.300.55 1:14.0002
» 2018-06-14 15:01:14.000 6 185.3.93.80 2018-06- 20:01:14.000Z
capture_window_duration_seconds g
» O gst_addr &
6 172.30.0.55 2018-06-14T20:01:14.000Z
List fields of current page or all fields.
v g 19 1 1
& Highl 2018-06-14 15:01:14.000 335 6 2.30.0.55 2018-06-14

Source: https://www.graylog.org/post/trend-analysis-with-graylog

Beyond a Browser Ul to Logs ?

Show the number of calls for all AP|
methods by name?

Log your APl methods by name
Tags allow you to use group-by

Graylog - Alerting

® ® O craylog - Slow responses in ' X Graylog

& C ® graylog.example.org:9000/webalerts/589314ee3d454a3{{988b9d5 % B

Search Streams Alerts Dashboards In4/0Out4msg/s Help~v Administrator v

Slow responses in production on stream H77P requests T (P
Check the timeline of this alert, including the notifications sent, and messages received during the alert.

0 This alert was triggered at 2017-02-02 12:15:58 and s still unresolved.

Alert timeline

This is a timeline of events occurred during the alert, you can see more information about some events below.

2017-02-0212:15:58.609 Graylog checks Slow responses in production (Field Aggregation Alert Condition) condition on stream HTTP Requests

2017-02-02 12:15: Field took_ms had a STDDEV of 358.951 in the last 5 minutes with trigger condition HIGHER than 300. (Current grace time: 5 minutes)
2017-02-02 12:15; Graylog triggers an alert for Slow responses in production (Field Aggregation Alert Condition) and starts sending notifications
2017-02-02 12:15; Graylog sent Wake me up, before you go-go (HTTP Alarm Callback) notification

2017-02-02 12:17:4 Condition is still satisfied, alert is unresolved

Triggered notifications

These are the notifications triggered during the alert, including the configuration they had at the time.

Wake me up, before you go-go

Notification was sent successfully.

o (BT

Alarm Cal

url: http://requestb.in/xix9zrxi
Messages evaluated
These are the messages evaluated around the time of the alert (2017-02-02 12:14:58 - 2017-02-02 12:17:08) in stream HTTP Requests.
Timestamp Message
2017-02-02 12:14:58.832 2017-02-02T11:14:58.832Z GET /posts/45326 [200] 42ms
2017-02-02 12:14:59.035 2017-02-02T11:14:59.035Z GET /posts [200] 41ms
2017-02-02 12:14:59.219 2017-02-02T11:14:59.219Z GET /posts [200] 48ms
2017-02-02 12:14:59.543 2017-02-02T11:14:59.543Z GET /posts [200] 54ms
2017-02-02 12:14:59.865 2017-02-02T11:14:59.865Z GET /posts/45326 [200] 43ms
2017-02-02 12:15:00.064 2017-02-02711:15:00.064Z GET /posts [200] 59ms
2017-02-02 12:15:00.254 2017-02-02T11:15:00.254Z GET /login [500] 41ms

e ———
Source: http://docs.graylog.org/en/2.4/pages/streams/alerts.html

Find more on logs

e “Structured logging in Python” and “Logging
as a First Class Citizen” by Steve Tarver

e Nhttp://www.structlog.org/en/stable/

e “| Heart Logs: Event Data, Stream
Processing, and Data Integration” by Jay
Kreps

http://stevetarver.github.io/2017/05/10/python-falcon-logging.html
http://stevetarver.github.io/2016/01/09/logging-best-practices.html
http://stevetarver.github.io/2016/01/09/logging-best-practices.html
http://www.structlog.org/en/stable/
http://shop.oreilly.com/product/0636920034339.do
http://shop.oreilly.com/product/0636920034339.do

Find more on metrics

e Measure Anything, Measure Everything (Etsy)
e (Collecting Metrics Using StatsD, a Standard
for Real-Time Monitoring
e Monitoring Applications with StatsD
e Logs and Metrics by Cindy Sridharan
o https://github.com/google/mtail

https://codeascraft.com/2011/02/15/measure-anything-measure-everything/
https://thenewstack.io/collecting-metrics-using-statsd-a-standard-for-real-time-monitoring/
https://thenewstack.io/collecting-metrics-using-statsd-a-standard-for-real-time-monitoring/
https://blog.goguardian.com/nerds/monitoring-applications-with-statsd
https://medium.com/@copyconstruct/logs-and-metrics-6d34d3026e38
https://github.com/google/mtail

Find more on events

e [racing Fast and Slow by Lynn Root
e Monitoring and Observability by Cindy
Sridharan

https://www.roguelynn.com/words/tracing-fast-and-slow/
https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c
https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c

Logs - UUIDs, KV pairs, Structlog,]SON,
mtail

Metrics - statsqg, dogstatsd

Events - Graylog, Splunk, ELK

Only the tip of the iceberg... and you still
need to monitor!

Questions ?

