
Two approaches to scale
your processing: Task
Queues and Workflows

Eoin Brazil, PhD, MSc, Team Lead, MongoDB

What happens when your application
has one order more ‘use’?

vertical

horizontal

Request - Response

● Everything in one request
● Do it in another request

● Move the request out to a separate
process completely

Queues and Workflows

Asynchronous distributed task queue
library, Celery.

A defined sequence of tasks is typically
defined as a workflow. Airflow is one
such workflow management system.

Celery

Tasks

Task

● Exists until acknowledged
● Results can be stored or ignored
● State - Pending, Received, Started,

Success, Failure, Revoked, Retry

● Definition styles - class or function

Task Definition Examples

@app.task
def add(x, y):
 return x + y

add.apply_async((2, 2), link=add.s(16),
expires=60, retry=False)

How to call a Task

apply_async(args[, kwargs[, …]])
delay(*args, **kwargs)
calling (__call__)

Link so callback results will be applied
to next task as partial argument.

Task Options

ETA and countdown, Expiration
Serialisation - JSON, pickle, YAML and
msgpack
Compression - gzip or bzip2

Routing - priority, task_routes

Workflows

Task Workflows

Signatures: Wraps a single task, groups
& callbacks.

Primitives: Building blocks to allow you
compose more complex tasks or simple
workflows.

Task Signatures

Partials: Add args, kargs, or new options

Immutables: Unchangeable signature

Callbacks: Takes parent value
add.apply_async((2, 2), link=add.s(16))

Task Primitives 1 / 2

Groups - list of task applied in parallel

Chains - links signatures into a chain

Chords - Group/Chain hybrid of header
tasks plus body tasks

Task Primitives 2 / 2

Map: Same as built-in, task.map([1, 2])
gives res = [task(1), task(2)].

Starmap: Args*, add.starmap([(2, 2), (4,
4)]) -> res =[task(2,2), task(4,4)]

Chunks: Breaks longer list into parts

Workers

Worker Settings/Options

Concurrency - multiprocessing, Eventlet

Limits - time, rate, max tasks, max
memory

Queues, Autoscaling

Scheduling

Do Task X at Time Y or in Z (time units)

Celery beat or RedBeat (Heroku)

In number of seconds as an integer, a
timedelta, or a crontab

Custom scheduler

https://blog.heroku.com/redbeat-celery-beat-scheduler

OpenEdx

● Grade updates
● Sending of bulk email
● Generate course structure
● CMS User task emails
● Account / User activation email
● Instructor tasks - update scores,

calculate responses, send emails

https://github.com/edx/edx-platform/blob/master/lms/djangoapps/grades/tasks.py
https://github.com/edx/edx-platform/blob/master/lms/djangoapps/bulk_email/tasks.py
https://github.com/edx/edx-platform/blob/master/openedx/core/djangoapps/content/course_structures/tasks.py
https://github.com/edx/edx-platform/blob/bogus-name/bogus.master/cms/djangoapps/cms_user_tasks/tasks.py
https://github.com/edx/edx-platform/blob/master/common/djangoapps/student/tasks.py
https://github.com/edx/edx-platform/blob/master/lms/djangoapps/instructor_task/tasks.py
https://github.com/edx/edx-platform/blob/master/lms/djangoapps/instructor_task/tasks.py

Airflow

Why Airflow 1 / 2 ?

● Web server that can render UI
● Metadata DB stores models
● Charting
● Workers (Mesos, Celery, Dask, Local,

Sequential)
● Hooks (various DB interfaces)
● Operators (a node / action in DAG)

Why Airflow 2 / 2 ?

Facilitates more complex workflows, the
base unit is the Directed Acyclic Graph
(DAG).

Tasks A, B, and C. It could say that A has
to run successfully before B can run, but
C can run anytime.

Celery and Airflow

“CeleryExecutor is one of the ways you can
scale out the number of workers. For this to
work, you need to setup a Celery backend
(RabbitMQ, Redis, ...) and change your
airflow.cfg to point the executor parameter to
CeleryExecutor and provide the related Celery
settings.”

Airflow

Key Concepts of ‘Work’ in Airflow

DAG: ordering of work
Operator: template of how to do the work
Task: parameterized instance of an operator
Task Instance: a task assigned to DAG and
with a state linked to specific run of the
DAG

Functionality for complex workflows

● Hooks
● Pools
● Connections
● Queues
● XComs

● Variables
● Branching
● SubDAGs
● Service Level

Agreements (SLAs)
● Trigger Rules

When to use
which ?

Celery
● RAM / CPU
● MLasS e.g. ores
● Social Media
○ Feeds,

Deletions,
CrossPost, Spam

Airflow
● ETL Jobs e.g.

Astronomer
● Batch jobs e.g.

Robinhood
● Complex

workflows / jobs

https://github.com/wiki-ai/ores
http://lc0.github.io/blog/2013/05/01/celery-messaging-at-scale-at-instagram/
https://gtoonstra.github.io/etl-with-airflow/index.html
https://www.astronomer.io/blog/airflow-at-astronomer/
https://robinhood.engineering/why-robinhood-uses-airflow-aed13a9a90c8

Resources

Documentation and Online User Groups

● Celery
○ http://docs.celeryproject.org/en/latest/userguide
○ https://groups.google.com/forum/#!forum/celery-users

● Airflow
○ https://airflow.incubator.apache.org/index.html
○ https://lists.apache.org/list.html?dev@airflow.apache.org

http://docs.celeryproject.org/en/latest/userguide
https://groups.google.com/forum/#!forum/celery-users
https://airflow.incubator.apache.org/index.html
https://lists.apache.org/list.html?dev@airflow.apache.org

